JOURNAL OF APPROXIMATION THEORY 58, 12-17 (1988)

Biased Varisolvent Chebyshev Approximation
on Subsets

ZHU CHANGZHONG* AND CHARLES B. DuNHAM

The University of Western Ontario, Department of Computer Science,
London, Ontario, N6A 5B7, Canada

Communicated by G. Meinardus

Received January 27, 1986

Approximation of a continuous function f on an interval [a, ] and closed sub-
sets Y by a varisolvent family is considered. The uniform norm is “biased” by
weighting positive deviations by a bias factor ». The limit as bias factors tend to
infinity and domains Y fill out the interval is examined. If the best one-sided
approximation on the interval is of maximum degree, a local existence result holds
and convergence to the best one-sided approximation on the interval is uniform on
[, B].  © 1988 Academic Press, Inc.

Let Cla, 8] be the space of continuous functions on a closed interval
[« B]. Let X be any closed non-empty subset of [a, §]. For ge C[a, §]
define

lglh.=sup{ig(x)l:xe X},  lgh=18lmp-

Let F be an approximating function unisolvent of variable degree on [a, ]
with parameter space P and bounded degree in the sense of Rice [1;2, 3].
Let r be a positive number (the bias factor) and define

a(y)=1y, y<0
=ry, y=0.

The problem of r-biased approximation (defined in [8, p. 224] in terms of
generalized weight functions) on X is, given feC[a, f], to find a
parameter A* e P for which ||d,(f — F(4, -))| x attains its infimum p,(f, X)
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over Ae P. F(A*,-) is called a best approximation to f on X with respect
to the r-biased Chebyshev norm. We can also consider r= oo and define

d.(y)= 17, y<0

=w’ y>0.

The problem of one-sided approximation from above (also defined in
[8,p.224] in terms of weight functions) on [a, f] is to minimize
|d(f—F(4,-))| over AeP, which is equivalent to minimizing
| /' — F(A, -}|| subject to the constraint F(A4, -)= f on [a, B].

We assume that the difficulty of a constant error curve [3, 4] does not
occur. Sufficient conditions for global existence in biased and one-sided
approximation are given in [6].

THEOREM [5]. Let F be of degree n at A. F(A, -) = f is a best one-sided
approximation to f on [a, B] if and only if there is a set xq, .., X,, A<
Xo< -+ <x,<B, such that f—F(A, ) takes alternately the value
—d (f —F(A4,-))| and O on the set. Best one-sided approximation is
unique.

LemMMA 1. Let F(A,-) be the best one-sided approximation to f from
above on [a, B] and F be of degree n at A. Let {x,, .., x,} be an ordered set
of points such that f — F(A, -) is alternately —|d_(f — F(A, -))| and 0. Let
e>0 be given. Then there exists 8, 0<d<e, such that if |x,—xi| <34,
r>2/0, and

max{|d,(f(x})— F(B, x)))l:i=0, 1, .. n} < | do,(f = F(4, )l (¥)

then
F(B, x;)— F(4, x;)
z —eldo(f—FA, D i f(x)—F(4,x)=0 (1)
Seldo(f=FA4, NI i flx)—F(4,x)= —|do(f— F(4, )l
(2)

Proof. f— F(A,-) is continuous on [«, #], hence continuous uniformly
on [a, B]. There exists §, >0 such that if |[x — y| < d;,

(/) = F(4, %)) = (/(3) = F(A, )] <5 Idc(f = F(A, Dl
Select 4, 0 <6 <4,, such that |x;,— x/| <& implies

[(f(x;) — F(4, x3)) = (f(x]) — F(4, x)))| <§ lde(f —F(4, - DI (3)
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Supposing that (1) does not hold, we have
F(A4, x;)— F(B, x;)>¢ |d,(f — F(4, )| (4)
and f(x;)— F(A4, x,;)=0. Then from (3)

|f(xi) — F(4, x))| <§ ldoo(f — F(A, ). (5)

From (4) and (5) we have
S(x})— F(B, x;)= f(x])— F(4, x;) + F(4, x;) — F(B, x;)

>§ ldo(f — F(4, )| >0,

hence

d(f(x;)= F(B, x)) =r(f(x]) — F(B, x}))>r % ldoo(f — F(4, DI

> 2 2N~ F(A, D> o~ F (A, D
This contradicts (*).
Supposing that (2) does not hold, we have
F(4, x;) — F(B, x{) < —¢ [do.(f — F(4, -)) (6)
and '
flx)— F(4, x;) = —|ld.(f — F(4, ).
Then from (3)
S(x))—F(4, x}) < f(x,) — F(4, x;) + & |d.(f — F(4, )|
=(—1+2¢) |d.(f—F(4, ). (7)
From (6) and (7) we have
S(x))—F(B, x{) = f(x;) — F(A, x;) + F(4, x{) — F(B, x;)
< —ldo.(f — F(4, )l <0,
hence
dAf(x;)—F(B, x})) = f(x}) —~ F(B, x{) < —|ld.(f — F(4, )|,

again contradicting (*).
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LEMMA 2 [7]. Let F be of degree n (maximal) at A, then for given ¢ >0
there exists n(e) such that |[F(A, -)— F(B, -)|| <n(e) if (1) holds and n(g) - 0
as e—0.

LEMMA 3 [7]. Let F be unisolvent of degree m at A,, k=0, 1, ..., and
let {F(Ay,-)} converge pointwise to F(Ag,-) on m distinct points. Then
{F(Ay, -)} converges uniformly to F(A,, -) on [a, B].

Define the density of a subset X of [«, f] to be
| X1 =sup{inf{|x — y|: ye X}: a<x < B}.

We say {X,} — [, ] if X, = [a, #] and for xe [a, B], there is a sequence
{xk}_’x, xkEXk.

THEOREM. Let F be unisolvent of variable degree. Let f have a best one-
sided approximation F(A, -) from above on [a, B] and let F be of degree n
(maximal) at A. There exist 6 >0 and M such that the density of X being
less than 6 and r > M imply that there is a best approximation to f on X with
respect to the r-biased Chebyshev norm. Let {X, } — [a, B] and r(k)1 oo and
F(Ay,-) be best approximations on X, with respect to the r(k)-biased
Chebyshev norm. Then {F(Ay, -)} converges uniformly to F(A,-) on [a, B].

Proof. Let xy, .., x, be as in Lemma 1. By definition of solvency of
degree n at A there exists A>0 such that if |y, — F(4, x))| <4, j=1,..,n,
then there exists a parameter B satisfying

F(B,x))=y;, j=1L.,n (8)

Using property Z and maximality of », it is easily seen that F is unisolvent
of degree n at such B, and hence B is completely determined by (8). Choose
¢ such that n(e) < /2, then by Lemmas 1 and 2, there exist §, 0<d <g,
such that if r > 2/6, |x;,— x/| <4, and

max{|d,(f(x;)— F(B, x]))|:i=0,1,..,n} < d,(f—F(4, )|,
then
F(A, -)— F(B, )| < /2.

Now let the density of X be less than J and let ||d,(f — F(B,, )}y be a
decreasing sequence with limit p,(f, X). As X < [«, B] and from Lemma 4

of [51, p /. X)<p,(f; [, B]) <|doo(f— F(4,-))ll. Let x[e X, |x{ —x,| <4,
i=0,1,..,n, and r>2/é. For all k sufficiently large,

max{|d,(f(x{) — F(By, x)))|: i=0, 1, .., n} < lld o (f — F(4, )|,

640/55/1-2
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hence
| F(4, -)— F(By, -)| < 4/2.

Then n-tuples of values at the points x,, ..., x, of the approximants F(B,, -)
form a bounded sequence with subsequence converging to an accumulation
point (y,, .., ¥,) which determines a parameter B at which F is unisolvent
of degree n. By Lemma 3, {F(B,,-)}, taking subsequence if necessary,
converges uniformly on [a,f] to F(B,-), hence for all xeX,
ld(f(x)— F(B, x))| <p,(f, X) and so F(B, -) is a best approximation to f
on X with respect to the r-biased Chebyshev norm. The first part of the
theorem is proved.

Now let X, — [a, ], r(k)t oo, then for k sufficiently large a best
approximation F(A,,-) to f on X, with respect to the r(k)-biased
Chebyshev norm exists. From Lemmas 1 and 2 it follows that {F(A,, -)}
converges uniformly to F(A4, -) on {a, f].

The results suggest determining the best one-sided approximation on
[« B] as the limit of best r(k)-biased approximation on a sequence of finite
subsets X, — [a, B].

If the best one-sided approximation to f on [a, 8] is not of maximum
degree, best biased approximation on subsets need not exist and even if it
exists, convergence of best approximations on subsets may not be uniform
[5].

Let us also consider the case when the bias factor r tends to zero.
Positive deviations are weighted by r and negative deviations weighted
by 1. This is equivalent to weighting positive deviations by 1 and negative
deviations by 1/r, which increases both deviations by a factor of 1/r. We get
by similar arguments.

THEOREM. Let F be unisolvent of variable degree. Let f have a best
one-sided approximation F(A, -} from below on [a, B and let F be of degree
n (maximal) at A. There exist 6 >0 and ¢ such that the density of X being
less than & and r < ¢ imply that there is a best approximation to f on X with
respect to the r-biased Chebyshev norm. Let {X,} — [a, B] and r(k) be a
decreasing sequence with limit O and let F(A,,-) be best to f on X, with
respect to the r(k)-biased Chebyshev norm. Then {F(A,-)} converges
uniformly to F(A, -) on [a, B].
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